Development and validation of a composite scoring system for robot-assisted surgical training—the Robotic Skills Assessment Score

Ashirwad J. Chowriappa, PhD, Yi Shi, MS, Syed Johar Raza, MD, Kamran Ahmed, PhD, Andrew Stegemann, BS, Gregory Wilding, PhD, Jihad Kaouk, MD, James O. Peabody, MD, Mani Menon, MD, James M. Hassett, MD, Thenkurussi Kesavadas, PhD, and Khurshid A. Guru, MD*

Article info

Article history:
Received 1 May 2013
Received in revised form 10 June 2013
Accepted 24 June 2013
Available online xxx

Keywords:
Scoring system
Surgical training
Robotic skills assessment
Score
Robotic training

Abstract

Background: A standardized scoring system does not exist in virtual reality-based assessment metrics to describe safe and crucial surgical skills in robot-assisted surgery. This study aims to develop an assessment score along with its construct validation.

Materials and methods: All subjects performed key tasks on previously validated Fundamental Skills of Robotic Surgery curriculum, which were recorded, and metrics were stored. After an expert consensus for the purpose of content validation (Delphi), critical safety determining procedural steps were identified from the Fundamental Skills of Robotic Surgery curriculum and a hierarchical task decomposition of multiple parameters using a variety of metrics was used to develop Robotic Skills Assessment Score (RSA-Score). Robotic Skills Assessment mainly focuses on safety in operative field, critical error, economy, bimanual dexterity, and time. Following, the RSA-Score was further evaluated for construct validation and feasibility. Spearman correlation tests performed between tasks using the RSA-Scores indicate no cross correlation. Wilcoxon rank sum tests were performed between the two groups.

Results: The proposed RSA-Score was evaluated on non-robotic surgeons (n = 15) and on expert-robotic surgeons (n = 12). The expert group demonstrated significantly better performance on all four tasks in comparison to the novice group. Validation of the RSA-Score in this study was carried out on the Robotic Surgical Simulator.

Conclusion: The RSA-Score is a valid scoring system that could be incorporated in any virtual reality-based surgical simulator to achieve standardized assessment of fundamental surgical tents during robot-assisted surgery.

© 2013 Elsevier Inc. All rights reserved.

*Corresponding author. Applied Technology Laboratory for Advanced Surgery (A.T.L.A.S.) Project, Department of Urology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263. Tel.: +1 716 845 7612; fax: +1 716 845 3300.
E-mail address: khurshid.guru@roswellpark.org (K.A. Guru).
0022-4804/$ — see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.06.054
1. Introduction

Over the recent years, several robotic surgical simulation platforms have emerged as a useful adjunct to training in and outside the operating room [1]. Studies have shown that simulation-based training (SBT) can increase the safety profile for beginners by bridging the gap between safe acquisition of surgical skills and effective operative performance [2,3]. Moreover, the need to minimize surgical errors and the ethics of training on patients makes SBT platforms timely and critical [4,5]. Based on a recent survey of 297 urologic surgeons, 78% felt it was required or beneficial to have robot-assisted surgical training (RAST). Eighty-three percent would consider a robot-assisted fellowship, indicating a significant shift in favor of RAST [6].

Commercially available simulators such as the Robotic Surgical Simulator (RoSS) [7], da Vinci Skills Simulator, and MIMIC da Vinci Trainer have previously been validated for realism (face validity) and content and construct validity [8]. These simulators provide a safe training environment for basic robotic skills while providing objective feedback on the trainee’s performance. However, the built-in metrics for evaluation of technical skills within these simulators are not consistent.

In SBT, the ability to assess trainee performance accurately is critical and requires metrics (score) to benchmark training outcomes. Such metrics used by the first generation of simulators [9] were based on criterions such as time to completion or number of errors committed. Mackay et al. [10] found that the process of assessing technical abilities is more robust if candidates are tested on multiple parameters using a variety of measures. van Dongen et al. [11] concluded that the implementation of a standardized scoring system could enable the assessment metrics to assess further aspects of performance.

To our knowledge, no standardized scoring system exists to evaluate, validate, and integrate virtual reality-based metrics during RAST. Such a standardized evaluation tool for technical skill assessment in SBT is likely to involve determining critical procedural steps, following an expert consensus (Delphi), and establishing performance scores and baseline assessment tools targeted to certify competency in the desired skills [12,13].

To standardize assessment of technical skills in SBT platforms, we developed a Robotic Skills Assessment Score (RSA-Score) that can be incorporated into any virtual or augmented reality-based surgical simulator. This study aims at development and validation of this novel skill assessment scoring system.

2. Materials and methods

This observational comparative study was carried out at Roswell Park Cancer Institute, Buffalo, New York, after institutional review board approval. The RSA-Score was developed using a validated Fundamental Skills of Robotic Surgery (FSRS) curriculum [14]. This section has been explained under the following subsection headings: (1) identification of components, (2) development of RSA-Score, (3) validation of the RSA-Score, and (4) statistical analysis (Fig. 1).

2.1. Identification of technical skills and critical components from FSRS curriculum

A consensus was achieved (Delphi methodology) using an expert robotic surgery panel (surgeon experience of over 1000 procedures with >50% console time). Components that are critical to safety of technical skills were identified from the FSRS curriculum [14].

The FSRS curriculum is a sequential, modular criterion-based structured curriculum for acquiring basic skills of robot-assisted surgery [14]. This curriculum was incorporated into a previously validated virtual reality simulator, RoSS [15]. The curriculum contains four modules (Orientation, Motor Skills, Basic Surgical Skills, and Intermediate Surgical Skills) with a total of 16 tasks. Metrics related to performance on the RoSS were measured, recorded, and archived by the software as seen with high fidelity virtual reality simulators. Based on these measurements, the RSA-Score methodology used in this manuscript was applied to obtain a final score based on the weightage system (i.e., safety in operative field, economy, and bimanual dexterity).

2.2. Development of the RSA-Score

2.2.1. Hierarchical metric decomposition

Critical safety determining procedural steps were identified and a hierarchical task decomposition of multiple parameters using a variety of metrics was used to develop the RSA multimeteric scoring system (Table 1). Following an expert consensus (Delphi), the expert robotic surgery panel was responsible for defining, weighting, integration, and configuration of the metrics into the hierarchical scoring system (Tables 1 and 2). Ten relevant metrics used on the FSRS curriculum were used to assess technical skills. These metrics were then integrated based on their definition into the following essential parameters: safety in operative field, economy of motion, bimanual dexterity, and critical error (Table 1).

2.2.2. Safety in operative field

Awareness of operative environment in which tasks are performed. Left Tool Out Of View, Right Tool Out Of View, Tool–Tool Collision, and Tissue Damage are the metrics used.

2.2.3. Economy of motion

Indicates effectiveness and the level of skill in which the task is performed. Distance By Camera, Number Of Errors, and Clutch Usage are the metrics used.

2.2.4. Bimanual dexterity

Indicates how an expert uses both hands in a complimentary way to provide best exposure in performing the task. Distance By Left Hand and Distance By Right Hand are the metrics used.
2.2.5. Critical error

Errors specific to performance of the task, for example, in the task Ball Placement, if the ball drops then it would constitute an error.

2.2.6. RSA-Score methodology

The RSA scoring schema was established using the FSRS metrics. Not all metrics contribute equally, it is important to note that some metrics although meaningful need not affect the quality of the task performed, for example. It is less desirable to attain quicker task completion time, but what is more critical to performing it is safety. In the proposed RSA-Score, weighting is appropriately set such that critical composite metrics that enhance technical skills and patient safety are given more weighting (Table 2). We obtain baseline performance scores for each of the FSRS tasks on the RoSS, established by expert robotic surgeons. Expert scores on each of the FSRS metrics ($i = 10$) are then normalized S_{E} and rescaled. According to the new RSA-Score, the maximum and minimum scores of each metric ranged from 1 to 5 (S_{E}, best and 1, worst), and its weight w_i (contribution) determined by an expert consensus (Delphi) are given in Table 2. Metrics such as time and error (where higher scores express lower performance) were normalized and set to $1 - |S_{\text{E}}|$. The mean metric value S_{E} for the experts was used to establish baseline performance scores. Upper and lower limits that indicate expert performance were set as $S_{\text{E}} \pm 1SD$. A final composite score S (overall score) was obtained as the weighted sum of individual composite scores.

$$S = \sum_{i} w_i \times S_{\text{E}}$$

2.3. Validation of the RSA-Score

The construct validation of the RSA-Score was performed as a multi-institutional study with participants enrolled from the following institutions: Roswell Park Cancer Institute (Buffalo, NY), Cleveland Clinic Foundation (Cleveland, OH), and Henry Ford Health System (Detroit, MI) in the United States. The participants were divided into an Expert Group (EG) and Novice Group (NG), depending on their level of robotic surgical experience. EG included participants with >150 procedures of cumulative robotic console experience. This group participated in the validation study as the expert arm and did not participate in the development of the score. The NG participants had no prior robotics or simulator experience. All participants completed a basic demographic questionnaire before participating as EG or NG. Participants were then given a short didactic session to introduce them to the features of the RoSS. This was followed by a 15-min period of acclimation on the simulator console during which the participants could...
ask questions. The participants then completed the selected tasks, namely the Fourth Arm Manipulation, Coordinated Tool Control, Ball Placement, and Needle Handling and Exchange tasks. Validation of RSA-Score in this study was carried out on the RoSS.

2.4. Statistical analysis

Measured outcome variables were summarized overall and by relevant demographic and baseline variables. Descriptive statistics such as frequencies and relative frequencies were computed for all categorical variables. Numeric variables were summarized using simple descriptive statistics such as the mean, standard deviation, and range. The Wilcoxon rank sum tests were used to statistically compare outcomes across independent groups (Expert versus Novice). Spearman correlation tests were used to statistically assess the dependence between tasks. All tests were two sided and tested at a 0.05 nominal significance level.

3. Results

3.1. Demographics

A cohort of 27 surgeons participated in this prospective study (Table 3). Participants were classified as novice (0 robot-assisted cases) and experts (>150 robot-assisted surgical procedures). Novice training levels included fellows, medical students, and residents. The NG had no previous robotic console or simulator experience. Seven had <5 y of postgraduate training (PGY) and eight with >5 y of PGY. One novice was left-hand dominant, whereas the remaining 14 had right-hand dominance. The EG (n = 12) consisted of surgeons with >150 prior robotic cases experience. All the participants in the EG were male and right-handed dominant. Five of the experts had >10 y of experience with RAS. The remaining seven experts had <10 y prior experience on RAS.

3.2. Relevance of selected tasks

Subsets of tasks from the FSRS curriculum were selected to develop the RSA-Score. Four tasks were used to assess technical skills performance using the RSA-Score on the
curriculum: Ball Placement, Coordinated Tool Control, Fourth Arm Manipulation, and Needle Handling and Exchange (Fig. 2). Relevance of the selected tasks was demonstrated through task independence. Spearman correlation tests were performed between tasks using the RSA-Score; tests indicated no cross-correlation (Table 4).

Following this expert consensus (Delphi), the above-mentioned critical procedural steps were identified and hierarchical task integration of multiple parameters using a variety of metrics was used to develop the composite metric scoring system. The RSA-Score focuses on time, safety in operative field, economy, bimanual dexterity, and critical error (Table 1).

3.3. Construct validation of the RSA-Score

Participant performance was assessed based on the RSA-Scores attained for each of the four tasks (fourth arm control, coordinated tool control, ball placement, and needle handling and exchange). Construct validity was analyzed in terms of task performance using the RSA-Score (shown in Table 5) as follows.

3.4. Fourth arm control task

EG completed the task quicker (3.8 versus 3.3; \(P = 0.026 \)) while demonstrating better bimanual dexterity in instrument utilization (3.6 versus 2.4; \(P = 0.002 \)). In context of safety in operative field, EG performance was significantly better than NG (3.5 versus 3.1; \(P = 0.043 \)). In terms of economy of motion (3.7 versus 2.9; \(P = 0.032 \)), experts used the camera and clutch more while performing the task. The experts were more precise (minimum error) (\(P = 0.051 \)). The overall task performance of the EG was reflected in the overall score and showed significantly better RSA-Score (\(P = 0.02 \)) in comparison to NG.

3.5. Coordinated tool control task

Instrument safety in operative field was significantly better in the EG in terms of RSA-Score (3.6 versus 2.5; \(P < 0.001 \)), the EG moved the instruments out of view less often and had fewer instrument–instrument collisions. The experts experienced significantly less tissue damage. Within this task, EG and NG exhibited similar results with respect to economy of motion. RSA-Scores for bimanual dexterity and errors were significantly higher (\(P < 0.001 \)). The final score for the task showed a significantly greater RSA overall score in the EG.

3.6. Ball placement task

Experts demonstrated superior economy of motion using the clutch and the camera more frequently (3.5 versus 2.1;
Skills tested: The DVSS™ provides the convenience of using a third tool for retraction purposes, which can be used as a substitute for a table-side surgical assistant. The fourth tool is activated using the pedals on the console and it is essential that the surgeon be able to use the pedals to comfortably alternate between the arms as the situation demands.

Task description: The trainee is presented with a virtual pelvis containing a red, blue or green sphere. The trainee is required to locate and grasp the needle driver with its jaws open and then pinch it until the green sphere is centered and zoomed in close. The needle driver is navigated accurately and positioned within the red sphere with its jaws open. The instrument is pinched until the sphere completely disappears.

Evaluation metrics: The time taken to complete the task, number of times tool-tool collision occurs, and the accuracy in performing the task are the main metrics that evaluate the competence of the trainee to use the arm in a coordinated fashion.

Task specific error: Accuracy in grasping the needle and placing the needle into the tray.

Fig. 2 — FSRS task description.

$P < 0.001$). In regard to safety in operative field, significance was observed in the EG ($P < 0.01$). No significance was noted in task time. Precision in completing the task (in terms of errors) by the EG was significantly higher than the NG ($P < 0.007$). The overall RSA-Scores of the experts were significantly higher than the novices ($P < 0.001$).

3.7. Needle handling and exchange task

The EG completed the task in shorter time ($P < 0.001$) and demonstrated better economy of motion ($P < 0.001$). The experts also performed the task with more precision (lesser error) ($P = 0.056$). Additionally, both safety and dexterity of the EG was significantly better. The overall task score showed significantly better performance in the expert group ($P < 0.001$).

3.8. Overall scores

The RSA-Scores were tabulated for each of the four tasks and mean values were established for comparison between the EG and NG. Overall RSA-Scores reported significantly better performance by the EG (Table 5). Box plots for the RSA overall scores between EG and NG for the four FSRS tasks clearly demonstrated that the experts outperformed the novices (Fig. 3).

4. Discussion

Recent demands for structured and effective training can be addressed by development of training curricula that implement standardized assessment tools for evaluation of surgical
skills. Our study aimed at developing and validating a standardized scoring system for RAST, using the metrics measured by a virtual reality simulator.

The literature shows a wide range of scoring systems that express common clinical skills such as economy of movements [16] or precision [11]. Although it is useful to know whether the different metrics show construct validity, the final goal is to judge the performance and assess the development of critical surgical tenets in SBT. However, to our knowledge, no scoring system exists to evaluate, validate, and integrate SBT metrics into a scoring system to assess comprehensive surgical performance at robot-assisted surgery. This article serves as a guide to standardize incorporation of skill components into any virtual or augmented reality-based simulator. However, in our study, we used RoSS to validate the methodology of the RSA-Score.

Optimal use of the camera and robotic instruments plays a critical role in assuming control of the robotic surgical console. Metrics that are able to identify skills such as Safety and Economy also impact human–machine interface learning and finally help in acquisition of safe surgical skills on the da Vinci Surgical System. The RSA-Score is not only able to demonstrate construct validation in the overall weighted score of the novices and experts but also identify skills that need improvement. This can be seen in lack of proficieny of the novices in skills such as Economy of Motion (demonstrating significantly greater camera and clutch usage) in the Fourth Arm Control task and Safety in Operative Field (fewer instrument–instrument collisions and loss of instruments) in the Ball Placement task.

Our composite metric methodology not only assesses technical skills but also evaluates cognitive assessment (Table 1). Because the fundamental technical skill tasks remain the same, RSA-Score could possibly be used across a range of simulators for RAS. Furthermore, the RSA-Score may improve trainee results by identifying areas in need of improvement (such as Dexterity, Economy, and Safety) and tailoring the curriculum design to targeted individual skills. Existing surgical simulators currently provide the trainee with assessment scales created by the industry, while the RSA-Score addresses the assessment based on data from expert and novice surgeons.
There are various standardized tools available for observation of practice in clinical and laboratory environments. The use of validated standardized tools has been widely used to assess performance on surgery. The Global Operative Assessment of Laparoscopic Skills [17] has been designed to assess technical skills in laparoscopic surgery, whereas the Global Assessment of Gastrointestinal Endoscopic Skills [18] assesses endoscopic skills. Global Operative Assessment of Laparoscopic Skills has shown construct validity to evaluate laparoscopic skills in multiple surgical procedures [17,19]. Global evaluative assessment of robotic skills is another standardized assessment tool for robotic surgical skills that has been validated in a clinical setting [20]. Despite the number of observational tools being available to assess surgical performance, there is still a scarcity of standardized tools available to measure the level of performance and assessment of technical skills on a simulator; particularly when studies have shown that SBT can improve technical and nontechnical skills in surgery [3]. This study could possibly be translated across to other non-robotic modalities. The basics of acquisition of technical skills remain the same. Consensus is needed to incorporate standardized curriculums into the virtual reality simulators.

Our study has a few limitations. First and most importantly, participants were only required to perform each of the four FSRS tasks once, regardless of their performance. Hence, scores used may not completely represent participant performance. Also, drawing conclusions based on a subset of FSRS tasks is not sufficient to characterize expert skills. Establishing true baseline performance on the RSA-Score requires each task of the FSRS curriculum to be performed several times by expert robotic surgeons. Nevertheless, the overall RSA-Scores provide some indication of participant familiarity with RAS skills.

More emphasis is needed to establish assessment methodologies such as the RSA-Score, to make learning in the simulated environment standardized, comparable, and effective. Moreover, to our knowledge, there is no governing body mandated credentialing guidelines for robot-assisted surgery. Certifying proficiency of robotic surgery skills remains in control of institutions and often includes industry-driven certification, a method that is neither standardized nor

<table>
<thead>
<tr>
<th>Table 5 – Comparison of RSA-Scores; expert (n = 12) and novice (n = 15) groups performance metrics on four FSRS tasks.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite metrics</td>
</tr>
<tr>
<td>RSA-Scores for Fourth Arm Control—expert versus novice</td>
</tr>
<tr>
<td>Safety in operative field</td>
</tr>
<tr>
<td>Critical errors</td>
</tr>
<tr>
<td>Bimanual dexterity</td>
</tr>
<tr>
<td>Task time</td>
</tr>
<tr>
<td>Economy</td>
</tr>
<tr>
<td>Overall score</td>
</tr>
<tr>
<td>RSA-Scores for Coordinated Tool Control—expert versus novice</td>
</tr>
<tr>
<td>Safety in operative field</td>
</tr>
<tr>
<td>Critical errors</td>
</tr>
<tr>
<td>Bimanual dexterity</td>
</tr>
<tr>
<td>Task time</td>
</tr>
<tr>
<td>Economy</td>
</tr>
<tr>
<td>Overall score</td>
</tr>
<tr>
<td>RSA-Scores for Ball Placement—expert versus novice</td>
</tr>
<tr>
<td>Safety in operative field</td>
</tr>
<tr>
<td>Critical errors</td>
</tr>
<tr>
<td>Bimanual dexterity</td>
</tr>
<tr>
<td>Task time</td>
</tr>
<tr>
<td>Economy</td>
</tr>
<tr>
<td>Overall score</td>
</tr>
<tr>
<td>RSA-Scores for Needle Handling and Exchange—expert versus novice</td>
</tr>
<tr>
<td>Safety in operative field</td>
</tr>
<tr>
<td>Critical errors</td>
</tr>
<tr>
<td>Bimanual dexterity</td>
</tr>
<tr>
<td>Task time</td>
</tr>
<tr>
<td>Economy</td>
</tr>
<tr>
<td>Overall score</td>
</tr>
<tr>
<td>Tasks</td>
</tr>
<tr>
<td>Overall RSA-Score for the FSRS tasks—expert versus novice</td>
</tr>
<tr>
<td>Fourth Arm Control</td>
</tr>
<tr>
<td>Coordinated Tool Control</td>
</tr>
<tr>
<td>Ball Placement</td>
</tr>
<tr>
<td>Needle Handling and Exchange</td>
</tr>
</tbody>
</table>
| SD = standard deviation.
competency based. Our methodology could possibly help establish a set of assessment guidelines in which robotic surgery credentialing is offered. Future efforts will aim to establish external reliability, efficacy, and validity of the RSA-Score by assessing it through wider multi-institutional studies. Studies are also underway to assess the concurrent and predictive validity using the RSA-Score. Because this tool measures technical skills in general and not the specifics of a particular task, further investigation can broaden the application of the RSA-Score for specific procedure-based training.

5. Conclusions

The RSA-Score is a valid scoring system that could be incorporated in any virtual reality-based surgical simulator to achieve standardized assessment of fundamental surgical skills required during robot-assisted surgery.

REFERENCES

